Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Attention with Cross-Lingual Position Representation (2004.13310v4)

Published 28 Apr 2020 in cs.CL

Abstract: Position encoding (PE), an essential part of self-attention networks (SANs), is used to preserve the word order information for natural language processing tasks, generating fixed position indices for input sequences. However, in cross-lingual scenarios, e.g. machine translation, the PEs of source and target sentences are modeled independently. Due to word order divergences in different languages, modeling the cross-lingual positional relationships might help SANs tackle this problem. In this paper, we augment SANs with \emph{cross-lingual position representations} to model the bilingually aware latent structure for the input sentence. Specifically, we utilize bracketing transduction grammar (BTG)-based reordering information to encourage SANs to learn bilingual diagonal alignments. Experimental results on WMT'14 English$\Rightarrow$German, WAT'17 Japanese$\Rightarrow$English, and WMT'17 Chinese$\Leftrightarrow$English translation tasks demonstrate that our approach significantly and consistently improves translation quality over strong baselines. Extensive analyses confirm that the performance gains come from the cross-lingual information.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Liang Ding (159 papers)
  2. Longyue Wang (87 papers)
  3. Dacheng Tao (829 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.