Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Attention with Structural Position Representations (1909.00383v1)

Published 1 Sep 2019 in cs.CL

Abstract: Although self-attention networks (SANs) have advanced the state-of-the-art on various NLP tasks, one criticism of SANs is their ability of encoding positions of input words (Shaw et al., 2018). In this work, we propose to augment SANs with structural position representations to model the latent structure of the input sentence, which is complementary to the standard sequential positional representations. Specifically, we use dependency tree to represent the grammatical structure of a sentence, and propose two strategies to encode the positional relationships among words in the dependency tree. Experimental results on NIST Chinese-to-English and WMT14 English-to-German translation tasks show that the proposed approach consistently boosts performance over both the absolute and relative sequential position representations.

Citations (72)

Summary

We haven't generated a summary for this paper yet.