Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

New approach to lattice QCD at finite density; results for the critical end point on coarse lattices (2004.10800v2)

Published 22 Apr 2020 in hep-lat

Abstract: All approaches currently used to study finite baryon density lattice QCD suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We formulate and test an algorithm, sign reweighting, that works directly at finite $\mu = \mu_B/3$ and is yet free from any such uncontrolled systematics. With this algorithm the {\em only} problem is the sign problem itself. This approach involves the generation of configurations with the positive fermionic weight $|{\rm Re\; det} D(\mu)|$ where $D(\mu)$ is the Dirac matrix and the signs ${\rm sign} \; ( {\rm Re\; det} D(\mu) ) = \pm 1$ are handled by a discrete reweighting. Hence there are only two sectors, $+1$ and $-1$ and as long as the average $\langle\pm 1\rangle \neq 0$ (with respect to the positive weight) this discrete reweighting by the signs carries no overlap problem and the results are reliable. The approach is tested on $N_t = 4$ lattices with $2+1$ flavors and physical quark masses using the unimproved staggered discretization. By measuring the Fisher (sometimes also called Lee-Yang) zeros in the bare coupling on spatial lattices $L/a = 8, 10, 12$ we conclude that the cross-over present at $\mu = 0$ becomes stronger at $\mu > 0$ and is consistent with a true phase transition at around $\mu_B/T \sim 2.4$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.