Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Continuity of eigenvalues and shape optimisation for Laplace and Steklov problems (2004.10784v2)

Published 22 Apr 2020 in math.SP, math.AP, and math.DG

Abstract: We associate a sequence of variational eigenvalues to any Radon measure on a compact Riemannian manifold. For particular choices of measures, we recover the Laplace, Steklov and other classical eigenvalue problems. In the first part of the paper we study the properties variational eigenvalues and establish a general continuity result, which shows for a sequence of measures converging in the dual of an appropriate Sobolev space, that the associated eigenvalues converge as well. The second part of the paper is devoted to various applications to shape optimization. The main theme is studying sharp isoperimetric inequalities for Steklov eigenvalues without any assumption on the number of connected components of the boundary. In particular, we solve the isoperimetric problem for each Steklov eigenvalue of planar domains: the best upper bound for the $k$-th perimeter-normalised Steklov eigenvalue is $8{\pi}k$, which is the best upper bound for the $k$-th area-normalised eigenvalue of the Laplacian on the sphere. The proof involves realising a weighted Neumann problem as a limit of Steklov problems on perforated domains. For $k = 1$, the number of connected boundary components of a maximizing sequence must tend to infinity, and we provide a quantitative lower bound on the number of connected components. A surprising consequence of our analysis is that any maximizing sequence of planar domains with fixed perimeter must collapse to a point.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.