Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Optimization with Output-Weighted Optimal Sampling (2004.10599v4)

Published 22 Apr 2020 in cs.LG and stat.ML

Abstract: In Bayesian optimization, accounting for the importance of the output relative to the input is a crucial yet challenging exercise, as it can considerably improve the final result but often involves inaccurate and cumbersome entropy estimations. We approach the problem from the perspective of importance-sampling theory, and advocate the use of the likelihood ratio to guide the search algorithm towards regions of the input space where the objective function to be minimized assumes abnormally small values. The likelihood ratio acts as a sampling weight and can be computed at each iteration without severely deteriorating the overall efficiency of the algorithm. In particular, it can be approximated in a way that makes the approach tractable in high dimensions. The "likelihood-weighted" acquisition functions introduced in this work are found to outperform their unweighted counterparts in a number of applications.

Citations (7)

Summary

We haven't generated a summary for this paper yet.