Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian perspective on classical control (2004.10288v2)

Published 21 Apr 2020 in math.OC, cs.SY, and eess.SY

Abstract: The connections between optimal control and Bayesian inference have long been recognised, with the field of stochastic (optimal) control combining these frameworks for the solution of partially observable control problems. In particular, for the linear case with quadratic functions and Gaussian noise, stochastic control has shown remarkable results in different fields, including robotics, reinforcement learning and neuroscience, especially thanks to the established duality of estimation and control processes. Following this idea we recently introduced a formulation of PID control, one of the most popular methods from classical control, based on active inference, a theory with roots in variational Bayesian methods, and applications in the biological and neural sciences. In this work, we highlight the advantages of our previous formulation and introduce new and more general ways to tackle some existing problems in current controller design procedures. In particular, we consider 1) a gradient-based tuning rule for the parameters (or gains) of a PID controller, 2) an implementation of multiple degrees of freedom for independent responses to different types of signals (e.g., two-degree-of-freedom PID), and 3) a novel time-domain formalisation of the performance-robustness trade-off in terms of tunable constraints (i.e., priors in a Bayesian model) of a single cost functional, variational free energy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.