Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Robust Linear Quadratic Regulators with Gaussian Processes (2105.07668v2)

Published 17 May 2021 in eess.SY, cs.LG, and cs.SY

Abstract: Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design. While learning-based control has the potential to yield superior performance in demanding applications, robustness to uncertainty remains an important challenge. Since Bayesian methods quantify uncertainty of the learning results, it is natural to incorporate these uncertainties into a robust design. In contrast to most state-of-the-art approaches that consider worst-case estimates, we leverage the learning method's posterior distribution in the controller synthesis. The result is a more informed and, thus, more efficient trade-off between performance and robustness. We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin. The formulation is based on a recently proposed algorithm for linear quadratic control synthesis, which we extend by giving probabilistic robustness guarantees in the form of credibility bounds for the system's stability.Comparisons to existing methods based on worst-case and certainty-equivalence designs reveal superior performance and robustness properties of the proposed method.

Citations (8)

Summary

We haven't generated a summary for this paper yet.