Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Learning Entangled Single-Sample Distributions via Iterative Trimming (2004.09563v2)

Published 20 Apr 2020 in cs.LG and stat.ML

Abstract: In the setting of entangled single-sample distributions, the goal is to estimate some common parameter shared by a family of distributions, given one \emph{single} sample from each distribution. We study mean estimation and linear regression under general conditions, and analyze a simple and computationally efficient method based on iteratively trimming samples and re-estimating the parameter on the trimmed sample set. We show that the method in logarithmic iterations outputs an estimation whose error only depends on the noise level of the $\lceil \alpha n \rceil$-th noisiest data point where $\alpha$ is a constant and $n$ is the sample size. This means it can tolerate a constant fraction of high-noise points. These are the first such results for the method under our general conditions. It also justifies the wide application and empirical success of iterative trimming in practice. Our theoretical results are complemented by experiments on synthetic data.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)