Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Exposure Fusion with Deghosting via Homography Estimation and Attention Learning (2004.09089v1)

Published 20 Apr 2020 in eess.IV and cs.CV

Abstract: Modern cameras have limited dynamic ranges and often produce images with saturated or dark regions using a single exposure. Although the problem could be addressed by taking multiple images with different exposures, exposure fusion methods need to deal with ghosting artifacts and detail loss caused by camera motion or moving objects. This paper proposes a deep network for exposure fusion. For reducing the potential ghosting problem, our network only takes two images, an underexposed image and an overexposed one. Our network integrates together homography estimation for compensating camera motion, attention mechanism for correcting remaining misalignment and moving pixels, and adversarial learning for alleviating other remaining artifacts. Experiments on real-world photos taken using handheld mobile phones show that the proposed method can generate high-quality images with faithful detail and vivid color rendition in both dark and bright areas.

Citations (25)

Summary

We haven't generated a summary for this paper yet.