Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learnable Exposure Fusion for Dynamic Scenes (1804.01611v1)

Published 4 Apr 2018 in cs.CV

Abstract: In this paper, we focus on Exposure Fusion (EF) [ExposFusi2] for dynamic scenes. The task is to fuse multiple images obtained by exposure bracketing to create an image which comprises a high level of details. Typically, such images are not possible to obtain directly from a camera due to hardware limitations, e.g., a limited dynamic range of the sensor. A major problem of such tasks is that the images may not be spatially aligned due to scene motion or camera motion. It is known that the required alignment by image registration problems is ill-posed. In this case, the images to be aligned vary in their intensity range, which makes the problem even more difficult. To address the mentioned problems, we propose an end-to-end \emph{Convolutional Neural Network} (CNN) based approach to learn to estimate exposure fusion from $2$ and $3$ Low Dynamic Range (LDR) images depicting different scene contents. To the best of our knowledge, no efficient and robust CNN-based end-to-end approach can be found in the literature for this kind of problem. The idea is to create a dataset with perfectly aligned LDR images to obtain ground-truth exposure fusion images. At the same time, we obtain additional LDR images with some motion, having the same exposure fusion ground-truth as the perfectly aligned LDR images. This way, we can train an end-to-end CNN having misaligned LDR input images, but with a proper ground truth exposure fusion image. We propose a specific CNN-architecture to solve this problem. In various experiments, we show that the proposed approach yields excellent results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Fahd Bouzaraa (3 papers)
  2. Ibrahim Halfaoui (4 papers)
  3. Onay Urfalioglu (11 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.