Papers
Topics
Authors
Recent
2000 character limit reached

Latin Hypercubes and Cellular Automata

Published 15 Apr 2020 in cs.DM and math.CO | (2004.07131v1)

Abstract: Latin squares and hypercubes are combinatorial designs with several applications in statistics, cryptography and coding theory. In this paper, we generalize a construction of Latin squares based on bipermutive cellular automata (CA) to the case of Latin hypercubes of dimension $k>2$. In particular, we prove that linear bipermutive CA (LBCA) yielding Latin hypercubes of dimension $k>2$ are defined by sequences of invertible Toeplitz matrices with partially overlapping coefficients, which can be described by a specific kind of regular de Bruijn graph induced by the support of the determinant function. Further, we derive the number of $k$-dimensional Latin hypercubes generated by LBCA by counting the number of paths of length $k-3$ on this de Bruijn graph.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.