Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PatchAttack: A Black-box Texture-based Attack with Reinforcement Learning (2004.05682v2)

Published 12 Apr 2020 in cs.CV

Abstract: Patch-based attacks introduce a perceptible but localized change to the input that induces misclassification. A limitation of current patch-based black-box attacks is that they perform poorly for targeted attacks, and even for the less challenging non-targeted scenarios, they require a large number of queries. Our proposed PatchAttack is query efficient and can break models for both targeted and non-targeted attacks. PatchAttack induces misclassifications by superimposing small textured patches on the input image. We parametrize the appearance of these patches by a dictionary of class-specific textures. This texture dictionary is learned by clustering Gram matrices of feature activations from a VGG backbone. PatchAttack optimizes the position and texture parameters of each patch using reinforcement learning. Our experiments show that PatchAttack achieves > 99% success rate on ImageNet for a wide range of architectures, while only manipulating 3% of the image for non-targeted attacks and 10% on average for targeted attacks. Furthermore, we show that PatchAttack circumvents state-of-the-art adversarial defense methods successfully.

Citations (100)

Summary

We haven't generated a summary for this paper yet.