Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Dynamic Patch Attack (2111.04266v2)

Published 8 Nov 2021 in cs.CV

Abstract: Adversarial patch attack is a family of attack algorithms that perturb a part of image to fool a deep neural network model. Existing patch attacks mostly consider injecting adversarial patches at input-agnostic locations: either a predefined location or a random location. This attack setup may be sufficient for attack but has considerable limitations when using it for adversarial training. Thus, robust models trained with existing patch attacks cannot effectively defend other adversarial attacks. In this paper, we first propose an end-to-end patch attack algorithm, Generative Dynamic Patch Attack (GDPA), which generates both patch pattern and patch location adversarially for each input image. We show that GDPA is a generic attack framework that can produce dynamic/static and visible/invisible patches with a few configuration changes. Secondly, GDPA can be readily integrated for adversarial training to improve model robustness to various adversarial attacks. Extensive experiments on VGGFace, Traffic Sign and ImageNet show that GDPA achieves higher attack success rates than state-of-the-art patch attacks, while adversarially trained model with GDPA demonstrates superior robustness to adversarial patch attacks than competing methods. Our source code can be found at https://github.com/lxuniverse/gdpa.

Citations (19)

Summary

We haven't generated a summary for this paper yet.