Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

TensorProjection Layer: A Tensor-Based Dimension Reduction Method in Deep Neural Networks (2004.04454v2)

Published 9 Apr 2020 in stat.ML, cs.CV, and cs.LG

Abstract: In this paper, we propose a dimension reduction method specifically designed for tensor-structured feature data in deep neural networks. The method is implemented as a hidden layer, called the TensorProjection layer, which transforms input tensors into output tensors with reduced dimensions through mode-wise projections. The projection directions are treated as model parameters of the layer and are optimized during model training. Our method can serve as an alternative to pooling layers for summarizing image data, or to convolutional layers as a technique for reducing the number of channels. We conduct experiments on tasks such as medical image classification and segmentation, integrating the TensorProjection layer into commonly used baseline architectures to evaluate its effectiveness. Numerical experiments indicate that the proposed method can outperform traditional downsampling methods, such as pooling layers, in our tasks, suggesting it as a promising alternative for feature summarization.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com