Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing pre-trained Transformer models for Lithuanian news clustering (2004.03461v1)

Published 3 Apr 2020 in cs.IR, cs.CL, and cs.LG

Abstract: A recent introduction of Transformer deep learning architecture made breakthroughs in various natural language processing tasks. However, non-English languages could not leverage such new opportunities with the English text pre-trained models. This changed with research focusing on multilingual models, where less-spoken languages are the main beneficiaries. We compare pre-trained multilingual BERT, XLM-R, and older learned text representation methods as encodings for the task of Lithuanian news clustering. Our results indicate that publicly available pre-trained multilingual Transformer models can be fine-tuned to surpass word vectors but still score much lower than specially trained doc2vec embeddings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (6)

Summary

We haven't generated a summary for this paper yet.