Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stable Boundary Conditions and Discretization for PN Equations (2004.02497v2)

Published 6 Apr 2020 in math.NA and cs.NA

Abstract: A solution to the linear Boltzmann equation satisfies an energy bound, which reflects a natural fact: The energy of particles in a finite volume is bounded in time by the energy of particles initially occupying the volume augmented by the energy transported into the volume by particles entering the volume over time. In this paper, we present boundary conditions (BCs) for the spherical harmonic (PN) approximation, which ensure that this fundamental energy bound is satisfied by the PN approximation. Our BCs are compatible with the characteristic waves of PN equations and determine the incoming waves uniquely. Both, energy bound and compatibility, are shown based on abstract formulations of PN equations and BCs to isolate the necessary structures and properties. The BCs are derived from a Marshak type formulation of BC and base on a non-classical even/odd-classification of spherical harmonic functions and a stabilization step, which is similar to the truncation of the series expansion in the PN method. We show that summation by parts (SBP) finite differences on staggered grids in space and the method of simultaneous approximation terms (SAT) allows to maintain the energy bound also on the semi-discrete level.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.