2000 character limit reached
Measuring Social Biases of Crowd Workers using Counterfactual Queries (2004.02028v1)
Published 4 Apr 2020 in cs.HC and cs.AI
Abstract: Social biases based on gender, race, etc. have been shown to pollute ML pipeline predominantly via biased training datasets. Crowdsourcing, a popular cost-effective measure to gather labeled training datasets, is not immune to the inherent social biases of crowd workers. To ensure such social biases aren't passed onto the curated datasets, it's important to know how biased each crowd worker is. In this work, we propose a new method based on counterfactual fairness to quantify the degree of inherent social bias in each crowd worker. This extra information can be leveraged together with individual worker responses to curate a less biased dataset.