Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Asymptotic optimality of the generalized $cμ$ rule under model uncertainty (2004.01232v2)

Published 2 Apr 2020 in math.PR and math.OC

Abstract: We consider a critically-loaded multiclass queueing control problem with model uncertainty. The model consists of $I$ types of customers and a single server. At any time instant, a decision-maker (DM) allocates the server's effort to the customers. The DM's goal is to minimize a convex holding cost that accounts for the ambiguity with respect to the model, i.e., the arrival and service rates. For this, we consider an adversary player whose role is to choose the worst-case scenario. Specifically, we assume that the DM has a reference probability model in mind and that the cost function is formulated by the supremum over equivalent admissible probability measures to the reference measure with two components, the first is the expected holding cost, and the second one is a penalty for the adversary player for deviating from the reference model. The penalty term is formulated by a general divergence measure. We show that although that under the equivalent admissible measures the critically-load condition might be violated, the generalized $c\mu$ rule is asymptotically optimal for this problem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube