Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cauchy theory for general Vicsek models in collective dynamics and mean-field limit approximations (2004.00883v3)

Published 2 Apr 2020 in math.AP, math-ph, and math.MP

Abstract: In this paper we provide a local Cauchy theory both on the torus and in the whole space for general Vicsek dynamics at the kinetic level. We consider rather general interaction kernels, nonlinear viscosity and nonlinear friction. Particularly, we include normalised kernels which display a singularity when the flux of particles vanishes. Thus, in terms of the Cauchy theory for the kinetic equation, we extend to more general interactions and complete the program initiated in Gamba et. al. (2016) (where the authors assume that the singularity does not take place) and in Figalli et. al. (2017) (where the authors prove that the singularity does not happen in the space homogeneous case). Moreover, we derive an explicit lower time of existence as well as a global existence criterion that is applicable, among other cases, to obtain a long time theory for non-renormalised kernels and for the original Vicsek problem without any a priori assumptions. On the second part of the paper, we also establish the mean-field limit in the large particle limit for an approximated (regularized) system that coincides with the original one whenever the flux does not vanish. Based on the results proved for the limit kinetic equation, we prove that for short times, the probability that the dynamics of this approximated particle system coincides with the original singular dynamics tends to one in the many particle limit.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.