Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aging arcsine law in Brownian motion and its generalization (2004.00808v1)

Published 2 Apr 2020 in math.PR, cond-mat.stat-mech, and nlin.CD

Abstract: Classical arcsine law states that fraction of occupation time on the positive or the negative side in Brownian motion does not converge to a constant but converges in distribution to the arcsine distribution. Here, we consider how a preparation of the system affects the arcsine law, i.e., aging of the arcsine law. We derive aging distributional theorem for occupation time statistics in Brownian motion, where the ratio of time when measurements start to the measurement time plays an important role in determining the shape of the distribution. Furthermore, we show that this result can be generalized as aging distributional limit theorem in renewal processes.

Summary

We haven't generated a summary for this paper yet.