Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized arcsine laws for fractional Brownian motion (1706.01675v1)

Published 6 Jun 2017 in cond-mat.stat-mech, math-ph, and math.MP

Abstract: The three arcsine laws for Brownian motion are a cornerstone of extreme-value statistics. For a Brownian $B_t$ starting from the origin, and evolving during time $T$, one considers the following three observables: (i) the duration $t_+$ the process is positive, (ii) the time $t_{\rm last}$ the process last visits the origin, and (iii) the time $t_{\rm max}$ when it achieves its maximum (or minimum). All three observables have the same cumulative probability distribution expressed as an arcsine function, thus the name of arcsine laws. We show how these laws change for fractional Brownian motion $X_t$, a non-Markovian Gaussian process indexed by the Hurst exponent $H$. It generalizes standard Brownian motion (i.e. $H=\tfrac{1}{2}$). We obtain the three probabilities using a perturbative expansion in $\epsilon = H-\tfrac{1}{2}$. While all three probabilities are different, this distinction can only be made at second order in $\epsilon$. Our results are confirmed to high precision by extensive numerical simulations.

Summary

We haven't generated a summary for this paper yet.