Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual-density-based reweighted $\ell_{1}$-algorithms for a class of $\ell_{0}$-minimization problems (2003.13047v2)

Published 29 Mar 2020 in math.OC, cs.IT, and math.IT

Abstract: The optimization problem with sparsity arises in many areas of science and engineering such as compressed sensing, image processing, statistical learning and data sparse approximation. In this paper, we study the dual-density-based reweighted $\ell_{1}$-algorithms for a class of $\ell_{0}$-minimization models which can be used to model a wide range of practical problems. This class of algorithms is based on certain convex relaxations of the reformulation of the underlying $\ell_{0}$-minimization model. Such a reformulation is a special bilevel optimization problem which, in theory, is equivalent to the underlying $\ell_{0}$-minimization problem under the assumption of strict complementarity. Some basic properties of these algorithms are discussed, and numerical experiments have been carried out to demonstrate the efficiency of the proposed algorithms. Comparison of numerical performances of the proposed methods and the classic reweighted $\ell_1$-algorithms has also been made in this paper.

Citations (2)

Summary

We haven't generated a summary for this paper yet.