Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised feature learning for speech using correspondence and Siamese networks (2003.12799v1)

Published 28 Mar 2020 in cs.CL and eess.AS

Abstract: In zero-resource settings where transcribed speech audio is unavailable, unsupervised feature learning is essential for downstream speech processing tasks. Here we compare two recent methods for frame-level acoustic feature learning. For both methods, unsupervised term discovery is used to find pairs of word examples of the same unknown type. Dynamic programming is then used to align the feature frames between each word pair, serving as weak top-down supervision for the two models. For the correspondence autoencoder (CAE), matching frames are presented as input-output pairs. The Triamese network uses a contrastive loss to reduce the distance between frames of the same predicted word type while increasing the distance between negative examples. For the first time, these feature extractors are compared on the same discrimination tasks using the same weak supervision pairs. We find that, on the two datasets considered here, the CAE outperforms the Triamese network. However, we show that a new hybrid correspondence-Triamese approach (CTriamese), consistently outperforms both the CAE and Triamese models in terms of average precision and ABX error rates on both English and Xitsonga evaluation data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Petri-Johan Last (1 paper)
  2. Herman A. Engelbrecht (9 papers)
  3. Herman Kamper (80 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.