Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representing Multi-Robot Structure through Multimodal Graph Embedding for the Selection of Robot Teams (2003.12164v2)

Published 26 Mar 2020 in cs.RO

Abstract: Multi-robot systems of increasing size and complexity are used to solve large-scale problems, such as area exploration and search and rescue. A key decision in human-robot teaming is dividing a multi-robot system into teams to address separate issues or to accomplish a task over a large area. In order to address the problem of selecting teams in a multi-robot system, we propose a new multimodal graph embedding method to construct a unified representation that fuses multiple information modalities to describe and divide a multi-robot system. The relationship modalities are encoded as directed graphs that can encode asymmetrical relationships, which are embedded into a unified representation for each robot. Then, the constructed multimodal representation is used to determine teams based upon unsupervised learning. We perform experiments to evaluate our approach on expert-defined team formations, large-scale simulated multi-robot systems, and a system of physical robots. Experimental results show that our method successfully decides correct teams based on the multifaceted internal structures describing multi-robot systems, and outperforms baseline methods based upon only one mode of information, as well as other graph embedding-based division methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Brian Reily (9 papers)
  2. Christopher Reardon (11 papers)
  3. Hao Zhang (948 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.