Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Initial Task Allocation for Multi-Human Multi-Robot Teams with Attention-based Deep Reinforcement Learning (2303.02486v2)

Published 4 Mar 2023 in cs.RO

Abstract: Multi-human multi-robot teams have great potential for complex and large-scale tasks through the collaboration of humans and robots with diverse capabilities and expertise. To efficiently operate such highly heterogeneous teams and maximize team performance timely, sophisticated initial task allocation strategies that consider individual differences across team members and tasks are required. While existing works have shown promising results in reallocating tasks based on agent state and performance, the neglect of the inherent heterogeneity of the team hinders their effectiveness in realistic scenarios. In this paper, we present a novel formulation of the initial task allocation problem in multi-human multi-robot teams as contextual multi-attribute decision-make process and propose an attention-based deep reinforcement learning approach. We introduce a cross-attribute attention module to encode the latent and complex dependencies of multiple attributes in the state representation. We conduct a case study in a massive threat surveillance scenario and demonstrate the strengths of our model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge, and O. Khatib, “Progress and prospects of the human–robot collaboration,” Autonomous Robots, vol. 42, pp. 957–975, 2018.
  2. A. Dahiya, A. M. Aroyo, K. Dautenhahn, and S. L. Smith, “A survey of multi-agent human–robot interaction systems,” Robotics and Autonomous Systems, vol. 161, p. 104335, 2023.
  3. S. D. Ramchurn, J. E. Fischer, Y. Ikuno, F. Wu, J. Flann, and A. Waldock, “A study of human-agent collaboration for multi-uav task allocation in dynamic environments,” in Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015, pp. 1184–1192.
  4. A. Freedy, O. Sert, E. Freedy, J. McDonough, G. Weltman, M. Tambe, T. Gupta, W. Grayson, and P. Cabrera, “Multiagent adjustable autonomy framework (maaf) for multi-robot, multi-human teams,” in 2008 International Symposium on Collaborative Technologies and Systems.   IEEE, 2008, pp. 498–505.
  5. A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A review of the state-of-the-art,” Cooperative robots and sensor networks 2015, pp. 31–51, 2015.
  6. M. Gini, “Multi-robot allocation of tasks with temporal and ordering constraints,” in Thirty-First AAAI Conference on Artificial Intelligence, 2017.
  7. N. Creech, N. C. Pacheco, and S. Miles, “Resource allocation in dynamic multiagent systems,” arXiv preprint arXiv:2102.08317, 2021.
  8. H. Karami, K. Darvish, and F. Mastrogiovanni, “A task allocation approach for human-robot collaboration in product defects inspection scenarios,” in 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN).   IEEE, 2020, pp. 1127–1134.
  9. L. Johannsmeier and S. Haddadin, “A hierarchical human-robot interaction-planning framework for task allocation in collaborative industrial assembly processes,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 41–48, 2016.
  10. H. Wu, A. Ghadami, A. E. Bayrak, J. M. Smereka, and B. I. Epureanu, “Task allocation with load management in multi-agent teams,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 8823–8830.
  11. T. Mina, S. S. Kannan, W. Jo, and B.-C. Min, “Adaptive workload allocation for multi-human multi-robot teams for independent and homogeneous tasks,” IEEE Access, vol. 8, pp. 152 697–152 712, 2020.
  12. T. Yu, J. Huang, and Q. Chang, “Optimizing task scheduling in human-robot collaboration with deep multi-agent reinforcement learning,” Journal of Manufacturing Systems, vol. 60, pp. 487–499, 2021.
  13. A. Ham and M.-J. Park, “Human–robot task allocation and scheduling: Boeing 777 case study,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1256–1263, 2021.
  14. J. Patel and C. Pinciroli, “Improving human performance using mixed granularity of control in multi-human multi-robot interaction,” in 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN).   IEEE, 2020, pp. 1135–1142.
  15. A. Tabrez, M. B. Luebbers, and B. Hayes, “A survey of mental modeling techniques in human–robot teaming,” Current Robotics Reports, vol. 1, pp. 259–267, 2020.
  16. L. M. Ma, M. Ijtsma, K. M. Feigh, and A. R. Pritchett, “Metrics for human-robot team design: A teamwork perspective on evaluation of human-robot teams,” ACM Transactions on Human-Robot Interaction (THRI), vol. 11, no. 3, pp. 1–36, 2022.
  17. J. Humann and E. Spero, “Modeling and simulation of multi-uav, multi-operator surveillance systems,” in 2018 Annual IEEE International Systems Conference (SysCon).   IEEE, 2018, pp. 1–8.
  18. T. De Bruin, J. Kober, K. Tuyls, and R. Babuška, “Integrating state representation learning into deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1394–1401, 2018.
  19. F. Ni, J. Hao, J. Lu, X. Tong, M. Yuan, J. Duan, Y. Ma, and K. He, “A multi-graph attributed reinforcement learning based optimization algorithm for large-scale hybrid flow shop scheduling problem,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 3441–3451.
  20. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  21. T. Zhang, “Feel-good thompson sampling for contextual bandits and reinforcement learning,” SIAM Journal on Mathematics of Data Science, vol. 4, no. 2, pp. 834–857, 2022.
  22. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  23. C. E. Harriott and J. A. Adams, “Modeling human performance for human–robot systems,” Reviews of Human Factors and Ergonomics, vol. 9, no. 1, pp. 94–130, 2013.
  24. P. Taillandier, B. Gaudou, A. Grignard, Q.-N. Huynh, N. Marilleau, P. Caillou, D. Philippon, and A. Drogoul, “Building, composing and experimenting complex spatial models with the gama platform,” GeoInformatica, vol. 23, pp. 299–322, 2019.
  25. M. Watson, C. Rusnock, M. Miller, and J. Colombi, “Informing system design using human performance modeling,” Systems Engineering, vol. 20, no. 2, pp. 173–187, 2017.
  26. R. W. Pew, “The speed-accuracy operating characteristic,” Acta Psychologica, vol. 30, pp. 16–26, 1969.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ruiqi Wang (62 papers)
  2. Dezhong Zhao (9 papers)
  3. Byung-Cheol Min (53 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com