Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wavelet Compressibility of Compound Poisson Processes (2003.11646v2)

Published 25 Mar 2020 in cs.IT and math.IT

Abstract: In this paper, we precisely quantify the wavelet compressibility of compound Poisson processes. To that end, we expand the given random process over the Haar wavelet basis and we analyse its asymptotic approximation properties. By only considering the nonzero wavelet coefficients up to a given scale, what we call the greedy approximation, we exploit the extreme sparsity of the wavelet expansion that derives from the piecewise-constant nature of compound Poisson processes. More precisely, we provide lower and upper bounds for the mean squared error of greedy approximation of compound Poisson processes. We are then able to deduce that the greedy approximation error has a sub-exponential and super-polynomial asymptotic behavior. Finally, we provide numerical experiments to highlight the remarkable ability of wavelet-based dictionaries in achieving highly compressible approximations of compound Poisson processes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.