Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bootstrapping Weakly Supervised Segmentation-free Word Spotting through HMM-based Alignment (2003.11087v1)

Published 24 Mar 2020 in cs.CV

Abstract: Recent work in word spotting in handwritten documents has yielded impressive results. This progress has largely been made by supervised learning systems, which are dependent on manually annotated data, making deployment to new collections a significant effort. In this paper, we propose an approach that utilises transcripts without bounding box annotations to train segmentation-free query-by-string word spotting models, given a partially trained model. This is done through a training-free alignment procedure based on hidden Markov models. This procedure creates a tentative mapping between word region proposals and the transcriptions to automatically create additional weakly annotated training data, without choosing any single alignment possibility as the correct one. When only using between 1% and 7% of the fully annotated training sets for partial convergence, we automatically annotate the remaining training data and successfully train using it. On all our datasets, our final trained model then comes within a few mAP% of the performance from a model trained with the full training set used as ground truth. We believe that this will be a significant advance towards a more general use of word spotting, since digital transcription data will already exist for parts of many collections of interest.

Citations (1)

Summary

We haven't generated a summary for this paper yet.