Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Deep Representations for Word Spotting Under Weak Supervision (1712.00250v3)

Published 1 Dec 2017 in cs.CV

Abstract: Convolutional Neural Networks have made their mark in various fields of computer vision in recent years. They have achieved state-of-the-art performance in the field of document analysis as well. However, CNNs require a large amount of annotated training data and, hence, great manual effort. In our approach, we introduce a method to drastically reduce the manual annotation effort while retaining the high performance of a CNN for word spotting in handwritten documents. The model is learned with weak supervision using a combination of synthetically generated training data and a small subset of the training partition of the handwritten data set. We show that the network achieves results highly competitive to the state-of-the-art in word spotting with shorter training times and a fraction of the annotation effort.

Citations (39)

Summary

We haven't generated a summary for this paper yet.