Papers
Topics
Authors
Recent
2000 character limit reached

Computing the proportional veto core

Published 20 Mar 2020 in cs.GT | (2003.09153v4)

Abstract: In social choice there often arises a conflict between the majority principle (the search for a candidate that is as good as possible for as many voters as possible), and the protection of minority rights (choosing a candidate that is not overly bad for particular individuals or groups). In a context where the latter is our main concern, veto-based rules -- giving individuals or groups the ability to strike off certain candidates from the list -- are a natural and effective way of ensuring that no minority is left with an outcome they find untenable. However, such rules often fail to be anonymous, or impose specific restrictions on the number of voters and candidates. These issues can be addressed by considering the proportional veto core -- the solution to a cooperative game where every coalition is given the power to veto a number of candidates proportional to its size. However, the na\"ive algorithm for the veto core is exponential, and the only known rule for selecting from the core, with an arbitrary number of voters, fails anonymity. In this paper we present a polynomial time algorithm for computing the core, study its expected size, and present an anonymous rule for selecting a candidate from it. We study the properties of core-consistent voting rules. Finally, we show that a pessimist can manipulate the core in polynomial time, while an optimist cannot manipulate it at all.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.