Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Quaternion Features for Privacy Protection (2003.08365v2)

Published 18 Mar 2020 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: We propose a method to revise the neural network to construct the quaternion-valued neural network (QNN), in order to prevent intermediate-layer features from leaking input information. The QNN uses quaternion-valued features, where each element is a quaternion. The QNN hides input information into a random phase of quaternion-valued features. Even if attackers have obtained network parameters and intermediate-layer features, they cannot extract input information without knowing the target phase. In this way, the QNN can effectively protect the input privacy. Besides, the output accuracy of QNNs only degrades mildly compared to traditional neural networks, and the computational cost is much less than other privacy-preserving methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.