Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Atiyah-Patodi-Singer Index Theorem for Domain Walls (2003.06674v1)

Published 14 Mar 2020 in math-ph, hep-th, math.DG, and math.MP

Abstract: We consider the index of a Dirac operator on a compact even dimensional manifold with a domain wall. The latter is defined as a co-dimension one submanifold where the connection jumps. We formulate and prove an analog of the Atiyah-Patodi-Singer theorem that relates the index to the bulk integral of Pontryagin density and $\eta$-invariants of auxiliary Dirac operators on the domain wall. Thus the index is expressed through the global chiral anomaly in the volume and the parity anomaly on the wall.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.