Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Intent-based Task-aware Shared Control Framework for Intuitive Hands Free Telemanipulation (2003.03677v2)

Published 7 Mar 2020 in cs.RO

Abstract: Shared control in teleoperation for providing robot assistance to accomplish object manipulation, called telemanipulation, is a new promising yet challenging problem. This has unique challenges--on top of teleoperation challenges in general--due to difficulties of physical discrepancy between human hands and robot hands as well as the fine motion constraints to constitute task success. We present an intuitive shared-control strategy where the focus is on generating robotic grasp poses which are better suited for human perception of successful teleoperated object manipulation and feeling of being in control of the robot, rather than developing objective stable grasp configurations for task success or following the human motion. The former is achieved by understanding human intent and autonomously taking over control on that inference. The latter is achieved by considering human inputs as hard motion constraints which the robot must abide. An arbitration of these two enables a trade-off for the subsequent robot motion to balance accomplishing the inferred task and motion constraints imposed by the operator. The arbitration framework adapts to the level of physical discrepancy between the human and different robot structures, enabling the assistance to indicate and appear to intuitively follow the user. To understand how users perceive good arbitration in object telemanipulation, we have conducted a user study with a hands-free telemanipulation setup to analyze the effect of factors including task predictability, perceived following, and user preference. The hands-free telemanipulation scene is chosen as the validation platform due to its more urgent need of intuitive robotics assistance for task success.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Michael Bowman (10 papers)
  2. Jiucai Zhang (14 papers)
  3. XiaoLi Zhang (43 papers)