Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
113 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
35 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Learn and Transfer Knowledge of Preferred Assistance Strategies in Semi-autonomous Telemanipulation (2003.03516v2)

Published 7 Mar 2020 in cs.RO, cs.AI, and cs.HC

Abstract: Enabling robots to provide effective assistance yet still accommodating the operator's commands for telemanipulation of an object is very challenging because robot's assistive action is not always intuitive for human operators and human behaviors and preferences are sometimes ambiguous for the robot to interpret. Although various assistance approaches are being developed to improve the control quality from different optimization perspectives, the problem still remains in determining the appropriate approach that satisfies the fine motion constraints for the telemanipulation task and preference of the operator. To address these problems, we developed a novel preference-aware assistance knowledge learning approach. An assistance preference model learns what assistance is preferred by a human, and a stagewise model updating method ensures the learning stability while dealing with the ambiguity of human preference data. Such a preference-aware assistance knowledge enables a teleoperated robot hand to provide more active yet preferred assistance toward manipulation success. We also developed knowledge transfer methods to transfer the preference knowledge across different robot hand structures to avoid extensive robot-specific training. Experiments to telemanipulate a 3-finger hand and 2-finger hand, respectively, to use, move, and hand over a cup have been conducted. Results demonstrated that the methods enabled the robots to effectively learn the preference knowledge and allowed knowledge transfer between robots with less training effort.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.