Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 13 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to Unobserved Confounding (2003.01747v2)

Published 3 Mar 2020 in stat.ME, cs.LG, and stat.ML

Abstract: It is a truth universally acknowledged that an observed association without known mechanism must be in want of a causal estimate. However, causal estimation from observational data often relies on the (untestable) assumption of no unobserved confounding'. Violations of this assumption can induce bias in effect estimates. In principle, such bias could invalidate or reverse the conclusions of a study. However, in some cases, we might hope that the influence of unobserved confounders is weak relative to alarge' estimated effect, so the qualitative conclusions are robust to bias from unobserved confounding. The purpose of this paper is to develop \emph{Austen plots}, a sensitivity analysis tool to aid such judgments by making it easier to reason about potential bias induced by unobserved confounding. We formalize confounding strength in terms of how strongly the confounder influences treatment assignment and outcome. For a target level of bias, an Austen plot shows the minimum values of treatment and outcome influence required to induce that level of bias. Domain experts can then make subjective judgments about whether such strong confounders are plausible. To aid this judgment, the Austen plot additionally displays the estimated influence strength of (groups of) the observed covariates. Austen plots generalize the classic sensitivity analysis approach of Imbens [Imb03]. Critically, Austen plots allow any approach for modeling the observed data and producing the initial estimate. We illustrate the tool by assessing biases for several real causal inference problems, using a variety of machine learning approaches for the initial data analysis. Code is available at https://github.com/anishazaveri/austen_plots

Citations (47)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.