Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Generate Time Series Conditioned Graphs with Generative Adversarial Nets (2003.01436v2)

Published 3 Mar 2020 in cs.LG, cs.SI, and stat.ML

Abstract: Deep learning based approaches have been utilized to model and generate graphs subjected to different distributions recently. However, they are typically unsupervised learning based and unconditioned generative models or simply conditioned on the graph-level contexts, which are not associated with rich semantic node-level contexts. Differently, in this paper, we are interested in a novel problem named Time Series Conditioned Graph Generation: given an input multivariate time series, we aim to infer a target relation graph modeling the underlying interrelationships between time series with each node corresponding to each time series. For example, we can study the interrelationships between genes in a gene regulatory network of a certain disease conditioned on their gene expression data recorded as time series. To achieve this, we propose a novel Time Series conditioned Graph Generation-Generative Adversarial Networks (TSGG-GAN) to handle challenges of rich node-level context structures conditioning and measuring similarities directly between graphs and time series. Extensive experiments on synthetic and real-word gene regulatory networks datasets demonstrate the effectiveness and generalizability of the proposed TSGG-GAN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shanchao Yang (5 papers)
  2. Jing Liu (526 papers)
  3. Kai Wu (134 papers)
  4. Mingming Li (17 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.