Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GAT-GAN : A Graph-Attention-based Time-Series Generative Adversarial Network (2306.01999v1)

Published 3 Jun 2023 in cs.LG and cs.AI

Abstract: Generative Adversarial Networks (GANs) have proven to be a powerful tool for generating realistic synthetic data. However, traditional GANs often struggle to capture complex relationships between features which results in generation of unrealistic multivariate time-series data. In this paper, we propose a Graph-Attention-based Generative Adversarial Network (GAT-GAN) that explicitly includes two graph-attention layers, one that learns temporal dependencies while the other captures spatial relationships. Unlike RNN-based GANs that struggle with modeling long sequences of data points, GAT-GAN generates long time-series data of high fidelity using an adversarially trained autoencoder architecture. Our empirical evaluations, using a variety of real-time-series datasets, show that our framework consistently outperforms state-of-the-art benchmarks based on \emph{Frechet Transformer distance} and \emph{Predictive score}, that characterizes (\emph{Fidelity, Diversity}) and \emph{predictive performance} respectively. Moreover, we introduce a Frechet Inception distance-like (FID) metric for time-series data called Frechet Transformer distance (FTD) score (lower is better), to evaluate the quality and variety of generated data. We also found that low FTD scores correspond to the best-performing downstream predictive experiments. Hence, FTD scores can be used as a standardized metric to evaluate synthetic time-series data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Srikrishna Iyer (2 papers)
  2. Teng Teck Hou (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.