Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Plug & Play Convolutional Regression Tracker for Video Object Detection (2003.00981v1)

Published 2 Mar 2020 in cs.CV

Abstract: Video object detection targets to simultaneously localize the bounding boxes of the objects and identify their classes in a given video. One challenge for video object detection is to consistently detect all objects across the whole video. As the appearance of objects may deteriorate in some frames, features or detections from the other frames are commonly used to enhance the prediction. In this paper, we propose a Plug & Play scale-adaptive convolutional regression tracker for the video object detection task, which could be easily and compatibly implanted into the current state-of-the-art detection networks. As the tracker reuses the features from the detector, it is a very light-weighted increment to the detection network. The whole network performs at the speed close to a standard object detector. With our new video object detection pipeline design, image object detectors can be easily turned into efficient video object detectors without modifying any parameters. The performance is evaluated on the large-scale ImageNet VID dataset. Our Plug & Play design improves mAP score for the image detector by around 5% with only little speed drop.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ye Lyu (5 papers)
  2. Michael Ying Yang (70 papers)
  3. George Vosselman (23 papers)
  4. Gui-Song Xia (139 papers)
Citations (2)