Spherically Symmetric Analytic Solutions and Naked Singularities in Einstein-Aether Theory (2003.00227v3)
Abstract: In the present work we analyze all the possible spherically symmetric exterior vacuum solutions allowed by the Einstein-Aether theory with static aether. We show that there are four classes of solutions corresponding to different values of a combination of the free parameters, $c_{14}=c_1+c_4$, which are: $ 0 < c_{14}<2$, $c_{14} < 0$, $c_{14}=2$ and $c_{14}=0$. We present explicit analytical solutions for $c_{14}=3/2, 16/9, 48/25, -16, 2$ and $0$. The first case has some pathological behavior, while the rest have all singularities at $r=0$ and are asymptotically flat spacetimes. For the solutions $c_{14}=16/9, 48/25\, \mathrm{\, and \,}\, -16$ we show that there exist no horizons, neither Killing nor universal horizon, thus we have naked singularities. Finally, the solution for $c_{14}=2$ has a metric component as an arbitrary function of radial coordinate, when it is chosen to be the same as in the Schwarzschild case, we have a physical singularity at finite radius, besides the one at $r=0$. This characteristic is completely different from General Relativity.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.