Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do ML Experts Discuss Explainability for AI Systems? A discussion case in the industry for a domain-specific solution (2002.12450v1)

Published 27 Feb 2020 in cs.HC and cs.AI

Abstract: The application of AI tools in different domains are becoming mandatory for all companies wishing to excel in their industries. One major challenge for a successful application of AI is to combine the ML expertise with the domain knowledge to have the best results applying AI tools. Domain specialists have an understanding of the data and how it can impact their decisions. ML experts have the ability to use AI-based tools dealing with large amounts of data and generating insights for domain experts. But without a deep understanding of the data, ML experts are not able to tune their models to get optimal results for a specific domain. Therefore, domain experts are key users for ML tools and the explainability of those AI tools become an essential feature in that context. There are a lot of efforts to research AI explainability for different contexts, users and goals. In this position paper, we discuss interesting findings about how ML experts can express concerns about AI explainability while defining features of an ML tool to be developed for a specific domain. We analyze data from two brainstorm sessions done to discuss the functionalities of an ML tool to support geoscientists (domain experts) on analyzing seismic data (domain-specific data) with ML resources.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (6)

Summary

We haven't generated a summary for this paper yet.