Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Phase diagram of the interacting persistent spin-helix state (2002.10036v1)

Published 24 Feb 2020 in cond-mat.mes-hall

Abstract: We study the phase diagram of the interacting two-dimensional electron gas (2DEG) with equal Rashba and Dresselhaus spin-orbit coupling, which for weak coupling gives rise to the well-known persistent spin-helix phase. We construct the full Hartree-Fock phase diagram using a classical Monte-Carlo method analogous to that used in Phys.Rev.B 96, 235425 (2017). For the 2DEG with only Rashba spin-orbit coupling, it was found that at intermediate values of the Wigner-Seitz radius rs the system is characterized by a single Fermi surface with an out-of-plane spin polarization, while at slightly larger values of rs it undergoes a transition to a state with a shifted Fermi surface and an in-plane spin polarization. The various phase transitions are first-order, and this shows up in discontinuities in the conductivity and the appearance of anisotropic resistance in the in-plane polarized phase. In this work, we show that the out-of-plane spin-polarized region shrinks as the strength of the Dresselhaus spin-orbit interaction increases, and entirely vanishes when the Rashba and Dresselhaus spin-orbit coupling strengths are equal. At this point, the system can be mapped onto a 2DEG without spin-orbit coupling, and this transformation reveals the existence of an in-plane spin-polarized phase with a single, displaced Fermi surface beyond rs > 2.01. This is confirmed by classical Monte-Carlo simulations. We discuss experimental observation and useful applications of the novel phase, as well as caveats of using the classical Monte-Carlo method.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.