Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid Algorithm Based Robust Big Data Clustering for Solving Unhealthy Initialization, Dynamic Centroid Selection and Empty clustering Problems with Analysis (2002.09380v1)

Published 21 Feb 2020 in cs.LG and cs.AI

Abstract: Big Data is a massive volume of both structured and unstructured data that is too large and it also difficult to process using traditional techniques. Clustering algorithms have developed as a powerful learning tool that can exactly analyze the volume of data that produced by modern applications. Clustering in data mining is the grouping of a particular set of objects based on their characteristics. The main aim of clustering is to classified data into clusters such that objects are grouped in the same clusters when they are corresponding according to similarities and features mainly. Till now, K-MEANS is the best utilized calculation connected in a wide scope of zones to recognize gatherings where cluster separations are a lot than between gathering separations. Our developed algorithm works with K-MEANS for high quality clustering during clustering from big data. Our proposed algorithm EG K-MEANS : Extended Generation K-MEANS solves mainly three issues of K-MEANS: unhealthy initialization, dynamic centroid selection and empty clustering. It ensures the best way of preventing unhealthy initialization, dynamic centroid selection and empty clustering problems for getting high quality clustering.

Summary

We haven't generated a summary for this paper yet.