Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Edge Crossings of the Greedy Spanner (2002.05854v2)

Published 14 Feb 2020 in cs.CG

Abstract: $t$-spanners are used to approximate the pairwise distances between a set of points in a metric space. They have only a few edges compared to the total number of pairs and they provide a $t$-approximation on the distance of any two arbitrary points. There are many ways to construct such graphs and one of the most efficient ones, in terms of weight and the number of edges of the resulting graph, is the greedy spanner. In this paper, we study the edge crossings of the greedy spanner for points in the Euclidean plane. We prove a constant upper bound for the number of intersections with larger edges that only depends on the stretch factor of the spanner, $t$, and we show there can be more than a bounded number of intersections with smaller edges. Our results imply that greedy spanners for points in the plane have separators of size $\mathcal{O}(\sqrt n)$, that their planarizations have linear size, and that a separator hierarchy for these graphs can be constructed from their planarizations in linear time.

Citations (6)

Summary

We haven't generated a summary for this paper yet.