Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Theories of real addition with and without a predicate for integers (2002.04282v4)

Published 11 Feb 2020 in cs.LO and math.LO

Abstract: We show that it is decidable whether or not a relation on the reals definable in the structure $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$ can be defined in the structure $\langle \mathbb{R}, +,<, 1 \rangle$. This result is achieved by obtaining a topological characterization of $\langle \mathbb{R}, +,<, 1 \rangle$-definable relations in the family of $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$-definable relations and then by following Muchnik's approach of showing that the characterization of the relation $X$ can be expressed in the logic of $\langle \mathbb{R}, +,<,1, X \rangle$. The above characterization allows us to prove that there is no intermediate structure between $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$ and $\langle \mathbb{R}, +,<, 1 \rangle$. We also show that a $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$-definable relation is $\langle \mathbb{R}, +,<, 1 \rangle$-definable if and only if its intersection with every $\langle \mathbb{R}, +,<, 1 \rangle$-definable line is $\langle \mathbb{R}, +,<, 1 \rangle$-definable. This gives a noneffective but simple characterization of $\langle \mathbb{R}, +,<, 1 \rangle$-definable relations.

Citations (10)

Summary

We haven't generated a summary for this paper yet.