Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The contact structure on the space of null geodesics of causally simple spacetimes (2002.03949v1)

Published 10 Feb 2020 in math.DG, math-ph, math.MP, and math.SG

Abstract: It is shown that the space of null geodesics of a star-shaped causally simple subset of Minkowski space is contactomorphic to the canonical contact structure in the spherical cotangent bundle of $\mathbb{R}n$. In the $3$-dimensional case we prove a similar result for a large class of causally simple contractible subsets of an arbitrary globally hyperbolic spacetime applying methods from the theory of contact-convex surfaces. Moreover we prove that under certain assumptions the space of null geodesics of a causally simple spacetime embeds with smooth boundary into the space of null geodesics of a globally hyperbolic spacetime. The characteristic foliation of this boundary provides an invariant of the conformal class of the causally simple spacetime.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.