Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Neural Network Learning Through Dual Variable Learning Rates (2002.03428v3)

Published 9 Feb 2020 in cs.LG and stat.ML

Abstract: This paper introduces and evaluates a novel training method for neural networks: Dual Variable Learning Rates (DVLR). Building on insights from behavioral psychology, the dual learning rates are used to emphasize correct and incorrect responses differently, thereby making the feedback to the network more specific. Further, the learning rates are varied as a function of the network's performance, thereby making it more efficient. DVLR was implemented on three types of networks: feedforward, convolutional, and residual, and two domains: MNIST and CIFAR-10. The results suggest a consistently improved accuracy, demonstrating that DVLR is a promising, psychologically motivated technique for training neural network models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube