Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Existence and uniqueness for the mild solution of the stochastic heat equation with non-Lipschitz drift on an unbounded spatial domain (2002.02016v3)

Published 5 Feb 2020 in math.PR

Abstract: We prove the existence and uniqueness of the mild solution for a nonlinear stochastic heat equation defined on an unbounded spatial domain. The nonlinearity is not assumed to be globally, or even locally, Lipschitz continuous. Instead the nonlinearity is assumed to satisfy a one-sided Lipschitz condition. First, a strengthened version of the Kolmogorov continuity theorem is introduced to prove that the stochastic convolutions of the fundamental solution of the heat equation and a spatially homogeneous noise grow no faster than polynomially. Second, a deterministic mapping that maps the stochastic convolution to the solution of the stochastic heat equation is proven to be Lipschitz continuous on polynomially weighted spaces of continuous functions. These two ingredients enable the formulation of a Picard iteration scheme to prove the existence and uniqueness of the mild solution.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)