Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Decoding Visual Responses based on Deep Neural Networks with Ear-EEG Signals (2002.01085v1)

Published 4 Feb 2020 in cs.HC and eess.SP

Abstract: Recently, practical brain-computer interface is actively carried out, especially, in an ambulatory environment. However, the electroencephalography signals are distorted by movement artifacts and electromyography signals in ambulatory condition, which make hard to recognize human intention. In addition, as hardware issues are also challenging, ear-EEG has been developed for practical brain-computer interface and is widely used. However, ear-EEG still contains contaminated signals. In this paper, we proposed robust two-stream deep neural networks in walking conditions and analyzed the visual response EEG signals in the scalp and ear in terms of statistical analysis and brain-computer interface performance. We validated the signals with the visual response paradigm, steady-state visual evoked potential. The brain-computer interface performance deteriorated as 3~14% when walking fast at 1.6 m/s. When applying the proposed method, the accuracies increase 15% in cap-EEG and 7% in ear-EEG. The proposed method shows robust to the ambulatory condition in session dependent and session-to-session experiments.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)