Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

Generalized spectrum of second order differential operators (2002.00676v1)

Published 3 Feb 2020 in math.AP

Abstract: We analyze the spectrum of the operator $\Delta{-1} [\nabla \cdot (K\nabla u)]$, where $\Delta$ denotes the Laplacian and $K=K(x,y)$ is a symmetric tensor. Our main result shows that this spectrum can be derived from the spectral decomposition $K=Q \Lambda QT$, where $Q=Q(x,y)$ is an orthogonal matrix and $\Lambda=\Lambda(x,y)$ is a diagonal matrix. More precisely, provided that $K$ is continuous, the spectrum equals the convex hull of the ranges of the diagonal function entries of $\Lambda$. The involved domain is assumed to be bounded and Lipschitz, and both homogeneous Dirichlet and homogeneous Neumann boundary conditions are considered. We study operators defined on infinite dimensional Sobolev spaces. Our theoretical investigations are illuminated by numerical experiments, using discretized problems. The results presented in this paper extend previous analyses which have addressed elliptic differential operators with scalar coefficient functions. Our investigation is motivated by both preconditioning issues (efficient numerical computations) and the need to further develop the spectral theory of second order PDEs (core analysis).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.