Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Dynamic Set Values for Nonzero Sum Games with Multiple Equilibriums (2002.00449v2)

Published 2 Feb 2020 in math.OC

Abstract: Nonzero sum games typically have multiple Nash equilibriums (or no equilibrium), and unlike the zero sum case, they may have different values at different equilibriums. Instead of focusing on the existence of individual equilibriums, we study the set of values over all equilibriums, which we call the set value of the game. The set value is unique by nature and always exists (with possible value $\emptyset$). Similar to the standard value function in control literature, it enjoys many nice properties such as regularity, stability, and more importantly the dynamic programming principle. There are two main features in order to obtain the dynamic programming principle: (i) we must use closed-loop controls (instead of open-loop controls); (ii) we must allow for path dependent controls, even if the problem is in a state dependent (Markovian) setting. We shall consider both discrete and continuous time models with finite time horizon. For the latter we will also provide a duality approach through certain standard PDE (or path dependent PDE), which is quite efficient for numerically computing the set value of the game.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.