Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Shape Segmentation with Geometric Deep Learning (2002.00397v1)

Published 2 Feb 2020 in cs.CV

Abstract: The semantic segmentation of 3D shapes with a high-density of vertices could be impractical due to large memory requirements. To make this problem computationally tractable, we propose a neural-network based approach that produces 3D augmented views of the 3D shape to solve the whole segmentation as sub-segmentation problems. 3D augmented views are obtained by projecting vertices and normals of a 3D shape onto 2D regular grids taken from different viewpoints around the shape. These 3D views are then processed by a Convolutional Neural Network to produce a probability distribution function (pdf) over the set of the semantic classes for each vertex. These pdfs are then re-projected on the original 3D shape and postprocessed using contextual information through Conditional Random Fields. We validate our approach using 3D shapes of publicly available datasets and of real objects that are reconstructed using photogrammetry techniques. We compare our approach against state-of-the-art alternatives.

Citations (1)

Summary

We haven't generated a summary for this paper yet.